In comments Aaron asked about an example of Kevin's construction with $10$ points.

In Kevin's comment the rational points come from the group law on the elliptic curve and $D$ is the lcm of the denominators.

Here is magma online code and example with $10$ points -- as Kevin wrote this way you **get as many solutions as you want**.

Starting with the OP's $m,n=1370,2210$ got a Weierstrass model of EC.

Found $4$ generators with mwrank (could have used some of OP's points instead of finding generators).

Multiples of the $4$ generators gave additional solutions to the OP and here is the result:

```
D= 12390849713183581790836556709545874255316431121037842112055747871712302486846209203045
m= 210340424562141262047595910887493791274649532004925386992592745031243269297527125123770927661074947583428727448136984975928253274592074678864394207689104340429534031062674250
n= 339308276118490648996486834351358597603631726810865040331116763882516514706229887973382299365675645371808385153564041457519299077991594919919935181746657366678299422371175250
x1= 12390849713183581790836556709545874255316431121037842112055747871712302486846209203045
x2= 284989543403222381189240804319555107872277915783870368577282201049382957197462811670035
x3= 458461439387792526260952598253197347446707951478400158146062671253355192013309740512665
x4= 359334641682323871934260144576830353404176502510097421249616688279656772118540066888305
x5= 37114042644837641401487345470535116987974416718966693064558863256140865315458375412615
x6= 61662771334048589214986191564717597484363845941296621783693700780051335795784841331249
x7= 136028531722798363505361591190162668220641503334832494123018223476468013307956416186455
x8= 244444823900679257002213529250900630227602064446780336065278693335401699985373414615885
x9= 301450648169146711879386180421262383173184752443718928831863273736903739700469518290993
x10= 437274569420552490793563721414855158314534791058269868589191046763361083229670113418305
```

Magma online code

```
m:=1370;
n:=2210;
aa<x,y,z>:=AffineSpace(Rationals(),3);
C:=Curve(aa,[m-x^2-y^2,n-x^2-z^2]);
P:=C!([1,37,47]);
pc:=ProjectiveClosure(C);
E,m1:=EllipticCurve(pc,pc!(P));
m2:=Inverse(m1);
aInvariants(E);
Ep:=E!([-323231734744697104/27633477663066497041,585299700649024 /27633477663066497041]);
m2(Ep);
m2(2*Ep);
```

rational$x$ such that $m_0-x^2$ and $n_0-x^2$ are perfect rational squares. The denominators will be growing -- but now choose $m=m_0D^2$ and $n=n_0D^2$ for some large $D$ to get as many solutions as you want. $\endgroup$